Recursive Euclide Algorithm 1
نویسنده
چکیده
The earlier SCM computer did not contain recursive function, so Trybulec and Nakamura proved the correctness of the Euclid’s algorithm only by way of an iterative program. However, the recursive method is a very important programming method, furthermore, for some algorithms, for example Quicksort, only by employing a recursive method (note push-down stack is essentially also a recursive method) can they be implemented. The main goal of the article is to test the recursive function of the SCMPDS computer by proving the correctness of the Euclid’s algorithm by way of a recursive program. In this article, we observed that the memory required by the recursive Euclide algorithm is variable but it is still autonomic. Although the algorithm here is more complicated than the non-recursive algorithm, its focus is that the SCMPDS computer will be able to implement many algorithms like Quicksort which the SCM computer cannot do.
منابع مشابه
Justifying the Correctness of the Fibonacci Sequence and the Euclide Algorithm by Loop-Invariant1
If a loop-invariant exists in a loop program, computing its result by loopinvariant is simpler and easier than computing its result by the inductive method. For this purpose, the article describes the premise and the final computation result of the program such as “while<0”, “while>0”, “while<>0” by loop-invariant. To test the effectiveness of the computation method given in this article, by us...
متن کاملJustifying the Correctness of the Fibonacci Sequence and the Euclide Algorithm by Loop-Invariant
If a loop-invariant exists in a loop program, computing its result by loop-invariant is simpler and easier than computing its result by the inductive method. For this purpose, the article describes the premise and the final computation result of the program such as “while<0”, “while>0”, “while<>0” by loop-invariant. To test the effectiveness of the computation method given in this article, by u...
متن کاملResultants and subresultants of p-adic polynomials
We address the problem of the stability of the computations of resultants and subresultants of polynomials defined over complete discrete valuation rings (e.g. Zp or k[[t]] where k is a field). We prove that Euclide-like algorithms are highly unstable on average and we explain, in many cases, how one can stabilize them without sacrifying the complexity. On the way, we completely determine the d...
متن کاملLow Complexity and High speed in Leading DCD ERLS Algorithm
Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...
متن کاملA real-time recursive dynamic model for vehicle driving simulators
This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...
متن کامل